1.1 Introduction

1.1.1 DAG mining for Procedural Abstraction

We present DAGMA, a new graph mining algorithm for Directed Acyclic Graphs (DAGs). DAG mining is important in general, but our work is inspired by DAGs that appear in code generation, especially in code compaction. Code–size optimization is crucial for embedded systems as cost and energy consumption depend on the size of the built–in memory. Moreover, the smaller the code is, the more functionality fits into the memory.

Procedural Abstraction (PA) reduces assembly code size by detecting frequent code fragments, extracting them into new procedures and substituting them with call/jump instructions. Traditionally, text–matching, e.g. suffix trees [6], is used for candidate detection. The obvious disadvantage is that to detect repeated instructions they must occur in the exact same order in the program. Dreweke et al. have shown in [7] that a graph–based PA outperforms the code shrinking results of a purely textual approach. Graph–based PA transforms the instruction sequences of basic blocks into data flow graphs (DFGs). A basic block is a code sequence that has exactly one entry point (i.e. only the first instruction may be the target of a jump instruction) and one exit point (i.e. only the last instruction may be a jump instruction). A DFG is a DAG that represents the instructions as nodes and the data dependencies between these instructions as directed edges. In general, from a single DFG several differently ordered instruction sequences can be generated that have the same semantics but cannot be detected by textual approaches. A graph–based approach, i.e. mining for frequent DFG fragments, can therefore find more opportunities for PA.
This chapter will show that for our domain DAG mining is better than regular graph mining. In addition, DFG–based code compaction has the following domain-specific requirements. While it is hard to extend general purpose miners accordingly, our DAG Mining Algorithm DAGMA addresses them up front. First, DAGMA can find unconnected fragments. This is crucial for PA as shown in Fig. 1.1. In the example DFG an unconnected fragment appears twice and is extracted into a procedure. Existing miners for connected graphs cannot find such unconnected fragments without applying tricks. For example, they use multiple starting points [2] to grow fragments or they add a helper pseudo–root that is connected to all other nodes [16]. Of course DAGMA can also search for connected fragments with one or more roots. Second, in addition to the traditional graph–based way to compute support/frequency of a fragment, DAGMA can also calculate it in an embedding–based way. Whereas graph–based counting detects that the frequent fragment of Fig. 1.1 appears in one graph (i.e. support = 1), an embedding–based counting distinguishes the two (non-overlapping) embeddings (i.e. support = 2). Since PA can extract both embeddings, PA requires an embedding–based support calculation. To be more exact, PA requires a search for induced fragments, because not every embedded fragment can be extracted. More details are given in Section 1.2.2.

1.1.2 Related Work

Whereas there is a bunch of algorithms for (undirected) mining in trees [4] and graphs [16, 12, 2], the situation is different for DAGs. The only three other DAG miners known to us [14, 3, 17] are not applicable to PA. The first is a miner for gene network data that does not handle induced but just embedded fragments. The others only address single–rooted and connected sub–DAGs and therefore detect fewer extractable fragments. (Note that in research on code compaction, ‘template generation’, ‘clone detection’, or ‘regularity extraction’ are the key words used to denote related forms of DAG mining.) DAGMA is more general and can be used for more than just PA. DAGMA can mine both with embedding–based and with traditional graph–based support and it can also mine for connected fragments (by filtering unconnected ones) or for single–rooted fragments (by using only one root).
After covering some preliminaries, we present DAGMA in detail in Section 1.3. To ease applicability of DAGMA to other DAG problems we focus on its general purpose aspects and only address PA specifics when needed. Section 1.4 gives performance results both on synthetic DAGs and on DFGs of ARM assembly programs.

1.2 Graph and DAG Mining Basics

Most graph miners build their search lattice by starting from single–node or single–edge graph fragments (i.e. common subgraphs of the database graphs) and grow them by adding nodes and/or edges in a stepwise fashion based on a set of expansion rules. Fig. 1.2 holds an example search lattice and shows the relationship between the fragments (nodes) and their expansions (the directed edges) that grow a fragment from another one. The concrete instances of a fragment, i.e. the appearances of its isomorphic subgraphs in the database graphs, are called embeddings. A fragment is frequent and therefore interesting, if its number of embeddings, counted after each expansion step, exceeds some threshold. This can be a concrete number, denoted by minimum support, or a percentage value of the database graphs, denoted by minimum frequency. The search process prunes the search lattice at infrequent fragments, since extending such a fragment always leads to other infrequent fragments, so further extensions are worthless (known as anti–monotone principle). The
main difficulty is to avoid traversing multiple paths to already created fragments, i.e. a fragment should not be generated again if it has already been reached by another sequence of expansion steps. Otherwise such a fragment is processed again, including the detection of embeddings in the database. Since this is costly with respect to space and time, it is essential to check for duplicates efficiently.

1.2.1 Graph–based versus embedding–based mining

There are two interpretations of minimum support. Support of a fragment in graph–based mining specifies the minimum number of database graphs with one or more embeddings of this fragment. Embedding–based mining defines support as the minimum number of non–overlapping embeddings regardless of the database graphs. The number of non–overlapping embeddings is computed by means of a maximum independent set algorithm [13], for PA this process is described in [7].

As mentioned above, the fragment shown in Fig. 1.1 has a graph–based support of 1 but an embedding–based support of 2. In contrast, the example in Fig. 1.3 shows a graph G and a fragment. Although there are two ways to embed the fragment into G, the embedded–based support is just 1, since the two ways of embedding overlap. There are two main reasons for only taking non–overlapping reasons into account. First, PA requires an embedding–based mining because only non–overlapping fragments can be used to shrink the code. An extraction of an embedding replaces all its nodes with a single instruction (call or jump) and therefore afterwards the extraction of an overlapping second fragment is no longer possible. Second, only for edge–disjoint (and therefore disjoint) embeddings the anti–monotone principle can be used to prune the search lattice. If we would also count overlapping embeddings, it is no longer true that the minimum support monotonously decreases with growing fragment sizes.

1.2.2 Embedded versus induced fragments

Induced fragments are a subset of *embedded fragments*, because of the more strict parent–child relationship in contrast to the more general ancestor–descendant relationship. Induced fragments are real subgraphs of the database graphs, because

Fig. 1.3 Example of one fragment in two database graphs.
directly connected nodes also have to be directly connected in the corresponding database graphs. Nodes that are directly connected in an embedded fragment have to be connected in the original graph but the connection may be a path over several nodes and edges. Therefore, a parent node in the embedded fragment has to be an arbitrary ancestor and a child node must be a descendant in the database graph. Only induced fragments are useful for PA, since embedded fragments can skip nodes. For example, if the chain $A \rightarrow B \rightarrow C$ is used as input, an possible embedded but not induced fragment is $A \rightarrow C$ that ignores the dependency of the node B.

1.2.3 DAG mining is \textit{NP–complete}

Whereas the search lattice can be enumerated in polynomial time for trees, general graph mining is \textit{NP–complete} because subgraph isomorphism is \textit{NP–complete}. Graph isomorphism is supposed to be in a complexity class of its own [8]. Unfortunately, sub-DAG isomorphism is in the same complexity class. As a proof, consider the following transformation of a general graph into a DAG: Replace each original edge with a new node (carrying the edge label, if existent) plus two directed edges from the old nodes to the new node. If the source graph is a directed graph, edge labels represent the direction. Obviously, the transformed graph is a DAG since every old node has only outgoing and every new node has only incoming edges. Since this transformation (and the inverse one) can be done in polynomial time and the increase of nodes and edges is polynomial, the transformation is a valid reduction. If two original graphs are isomorphic to each other, they also are isomorphic after the transformation. If a graph contains a subgraph, its transformed graph contains the transformed subgraph. The inverse reduction is obvious, since the DAG can be treated as a general graph. Hence, each (sub-)graph isomorphism problem can be solved by solving the corresponding (sub-)DAG isomorphism problem and vice versa. As a result, DAG isomorphism is in the same complexity class as graph isomorphism and sub-DAG isomorphism is in the same complexity class as subgraph isomorphism and therefore DAG mining is \textit{NP–complete}.

1.3 Algorithmic Details of DAGMA

Because of the \textit{NP–completeness}, one of the challenging problems for DAG mining is to avoid as many costly (sub-)DAG isomorphism tests as possible. The enumeration of the fragments has to quickly detect duplicates, i.e. fragments that are reached through several paths. As other mining algorithms do, DAGMA solves this by encoding fragments in a canonical form that is both simple to construct and more amenable to comparison than costly subgraph isomorphism tests.
1.3.1 A Canonical Form for DAG enumeration

The fundamental idea of DAGMA is a novel canonical form that exploits that DAGs can be sorted topologically (in linear time with respect to the number of nodes and edges [5]). This way each node has a topological level based on the length of the longest path from a root node to the node itself. See the two levels in Fig. 1.4, indicated with roman numbers I and II. The main idea is the step-by-step construction of fragments by inserting nodes and edges in topological order. Our canonical form of a DAG contains information about the graph structure, the edge directions, the labels (if any), and the insertion order (when enumerating the search lattice and constructing growing fragments).

In Fig. 1.4(a) fragment expansion starts from a single root B (denoted by index 1). Another node B (index 2) is added in the second step. Step 3 simultaneously inserts the node A (index 3) and the edge from its predecessor B. The edge index 3.0 indicates that the edge was inserted at the same time as node 3. The last step adds an edge to the previously inserted node without adding a new node. This first edge targeting node 3 after its insertion is labeled 3.1. The canonical descriptions given below the fragments in Fig. 1.4 consist of tuples of the form \((\text{node label index}, \text{predecessor index})\). Since edge label indices are irrelevant for PA we omit them to simplify explanation. For efficiency, node labels are sorted according to their frequency (let us assume: \(A = 0, B = 1, C = 2, \ldots\)). Hence, the first tuple \((1, 0)\) states that node B (= 1) has been inserted first with no predecessor (0 as predecessor index). In general, the predecessor index refers to the insertion index of its parent node. For example, the tuple \((0, 2)\) indicates that node A (= 0) is inserted with node B2 as its predecessor. If an edge (e.g. 3.1) is inserted without adding a new node at the same time, a special node label index \(n\) that is bigger than all other label indices is used. Tuple \((n, 1)\) expresses that the edge is connected to the last added node.

A canonical fragment is created by the insertion order of nodes and edges with the biggest canonical description. Two canonical descriptions are compared numerically, tuple by tuple and tuple-element by tuple-element. Thus, the fragment in Fig. 1.4(b) with its different edge insertion order is not canonical since \((0, 1)\) is smaller than \((0, 2)\). Hence, it can be pruned during the enumeration of the lattice. The structure of the canonical form can be used to restrict the expansion of frag-
Algorithm 1: DAG mining.

Data: database with DAGs \(db \), mining parameter \(s \)

Result: frequent sub-DAGs \(res \)

begin

\(res \leftarrow \emptyset \)

\(n \leftarrow \text{frequentNodes}(db, s) \)

\(l \leftarrow \text{createLabelFunction}(n) \)

while \(n \neq \emptyset \) do

\(res \leftarrow res \cup n \)

\(tmp \leftarrow \emptyset \)

for \(f \in n \) do

\(tmp \leftarrow tmp \cup \text{insertRoots}(f, l) \)

\(tmp \leftarrow tmp \cup \text{insertLevel}(f, l) \)

\(tmp \leftarrow tmp \cup \text{insertNode}(f, l) \)

\(tmp \leftarrow tmp \cup \text{pruneNonCanonical}(\text{insertEdge}(f, l)) \)

\(n \leftarrow \text{filterInfrequentOrUnExtendibleFragments}(tmp, s) \)

\(res \leftarrow \text{filterUnWantedFragments}(res, s) \)

end

1.3.2 Basic Structure of the DAG Mining Algorithm

The DAG mining algorithm (Algo. 1) computes an initial set of frequent single-node fragments (line 3) that are then expanded in a stepwise fashion. As a consequence of the canonical form, fragments are expanded according to the following rules:

1. insert a new root node (at the first topological level, line 9),
2. start a new topological level (i.e. insert a new node and a new edge that starts from the current level, line 10),
3. stay at the current topological level and insert a new node at that level (and an edge from the previous level, line 11),
4. insert a new single edge to the previously inserted node (whose predecessor has already been inserted, line 12).

The first three rules generate canonical fragments, so just the remaining few duplicates generated by rule 4 must be pruned (line 12). Frequency and other requirements allow more pruning (line 13) before the main loop further expands the lattice.
Algorithm 2: Expanding Fragments with a new Root.

Data: fragment f, labelIndexFunction l

Result: frequent fragments res

begin

1 $res \leftarrow \emptyset$

2 if containsEdges(f) then

3 return

5 for embedding $x \in f$ do

6 for unused node $y \in$ database graph of x with $l(y) < l($last ins. node$)$ do

7 tmp \leftarrow expand x with y

8 add new embedding tmp to res

end

1.3.3 Expansion Rules

Fig. 1.2 shows a complete search lattice for a database of only one graph (shaded gray) to keep the example simple. Typically, a database contains more than one graph. Different types of edges represent the expansion rules applied. The search lattice nicely demonstrates that in this example none of the fragments (or embeddings) is visited twice, although without a pruning based on the canonical form most fragments could have been reached along several paths. After the initialization, the search lattice holds three single–node fragments.

Rule 1: Because of the topological creation, the first expansion rule (new root) can only be applied to fragments with one topological level and without edges (Algo. 2, lines 3–4). This rule completely avoids duplicates because no node with a label index greater than the last one will be inserted (line 7). That is similar to the candidate item set generation described in [1]. Consider, for example, the initial fragment B in Fig. 1.2. It is just extended with the root node A and not with C since the fragment (B,C) is already present as (C,B) which has a bigger canonical form $(2,0)(1,0)$ (instead of $(1,0)(2,0)$). More formally: the insertion order of roots is valid and therefore the canonical description $(x_1,0)(x_2,0)\ldots(x_i,0)$ is maximal, if the condition $x_a >= x_b$ holds for every $a < b$.

Rule 2: When a new topological level is started by the insertion of a node, the expansion of the current topological level is completed. All duplicates can easily be avoided during this phase by checking partitions that reflect the symmetries in a graph. Partitions are the basis of graph isomorphism tests [10] and can be constructed in polynomial time. Partitions are created by the indegree, outdegree, and node label index of every node and are afterwards iteratively refined based on their neighboring partitions. Regardless of which node of a partition is selected as the predecessor, the resulting graphs are isomorphic. Therefore, a new level can only be started canonically when the last inserted node of a partition (with the highest insertion index) is used as the predecessor (Algo. 3, line 5). Since only neighboring nodes can be in the same partition, the check in line 5 is simple.
Algorithm 3: Expanding Fragments with a new Level or a new Node.

Data: fragment f, labelIndexFunction l
Result: frequent fragments res

1 begin
2 $res \leftarrow \emptyset$
3 for node x of f at the current topological level or before the current level do
4 $step \leftarrow$ ins. step of x
5 if $\neg samePartition(step, step + 1)$ then
6 for embedding $e \in f$ do
7 $res \leftarrow res \cup$ expandNewLevel(l, e, x) or expandNewNode(l, e, x)
8 end

Algorithm 4: Subroutine expandNewLevel.

Data: labelIndexFunction l, embedding e, node x
Result: frequent fragments res

1 begin
2 $res \leftarrow \emptyset$
3 $superX \leftarrow$ corresponding node to x in supergraph of e
4 for unused edge y to unused node z \in supergraph of e do
5 $tmp \leftarrow$ expand e with edge y ($superX \rightarrow z$)
6 add new embedding tmp to res
7 end

Fig. 1.5 Starting a new level III by insertion of a node and an edge.

The subroutine in Algo. 4 finds all unused edges of the supergraph of the current embedding with a used node as starting node leading to an unused node. Fig. 1.5 shows all possible ways to extend a two-level graph with a new node A, since the predecessor has to be in the last topological level and the last in its partition (the gray boxes).

Rule 3: The insertion of a new node at the current level is similar to the previous rule and does not generate duplicates, either. The partition check has to be applied again (Algo. 3, line 5). Since the node label index is the most significant element of each tuple in the canonical form, the next inserted node must have a smaller (or equal) index than its predecessor (Algo. 5, line 4). For equal labels, the new predecessor index also has to be smaller or equal to the previous predecessor index to achieve the maximal canonical description (line 7).
Algorithm 5: Subroutine expandNewNode.

Data: labelIndexFunction l, embedding e, node x
Result: frequent fragments res

begin
1 $res \leftarrow \emptyset$
2 superX \leftarrow corresponding node to x in supergraph of e
3 for unused edge y to unused node z in supergraph of e with $l(z) \leq l(last\ ins.\ node)$ do
4 stepX \leftarrow ins. step of node x
5 stepLast \leftarrow ins. step of last predecessor
6 if $l(z) = l(last\ ins.\ node) \land stepLast < stepX$ then
7 tmp \leftarrow expand e with edge y (superX \rightarrow z)
8 add new embedding tmp to res
9 end
10 end

Algorithm 6: Expanding Fragments with a new Single Edge.

Data: fragment f, labelIndexFunction l
Result: frequent fragments res

begin
1 $res \leftarrow \emptyset$
2 if samePartition(last ins. node, next to last ins. node) then
3 return
4 for embedding $e \in f$ do
5 superX \leftarrow corresponding node to the last ins. node in supergraph of e
6 for unused edge y from used node z to last ins. node \in supergraph of e do
7 stepZ \leftarrow ins. step of node z
8 stepLast \leftarrow ins. step of last edge–adding–node
9 if stepZ < stepLast then
10 tmp \leftarrow expandSingleEdge($l, stepZ, e, y, z$)
11 add new embedding tmp to res
12 end
13 end

Fig. 1.2 this rule is used once to generate fragment $C \rightarrow (A, B)$ with its canonical description $(2,0)(1,1)(0,1)$. The same fragment could have been reached from the fragment $C \rightarrow A$ with the numerically smaller description $(2,0)(0,1)(1,1)$. Hence it is pruned.

Rule 4: Probably the most difficult expansion rule is the insertion of a new single edge targeting the last inserted node. As before, pruning is based on partitions and predecessor indices (see Algo. 6, line 3 and Algo. 7, line 3). In addition, the set of predecessors of the current and the last inserted node are compared to exclude non-canonical insertion orders (Algo. 7, line 4). This approach can avoid a good portion of potential duplicates but not all of them. Complete avoidance may be possible, but has to be NP–complete due to the NP–complexity of sub-DAG mining. Hence, there is the usual trade–off: a more complex test is slower but speeds up the search process by more pruning.
Algorithm 7: Subroutine expandSingleEdge.

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>begin</td>
</tr>
<tr>
<td>2</td>
<td>$\text{res} \leftarrow \emptyset$</td>
</tr>
<tr>
<td>3</td>
<td>if ~samePartition(stepZ, stepZ + 1) ∧</td>
</tr>
<tr>
<td>4</td>
<td>~sameLabelAndPredecessors(l, last ins. node, next to last ins. node) then</td>
</tr>
<tr>
<td>5</td>
<td>$\text{res} \leftarrow \text{expand } e \text{ with edge } y (z \rightarrow \text{last ins. node})$</td>
</tr>
<tr>
<td>6</td>
<td>end</td>
</tr>
</tbody>
</table>

Fig. 1.6 Duplicate fragment that is not avoided by the enumeration process.

Fig. 1.6(a) shows a duplicate of the canonical fragment in Fig. 1.6(b) that is not avoided by the enumeration process and needs to be pruned by an exponential test. We accelerate this test by reusing the partition information computed during expansion. Permuting the insertion order of nodes in the same partition leaves the canonical form unchanged, so only the permutations of partitions at each topological level must be checked. This does not decrease the theoretical complexity compared to permuting all nodes, but speeds up the process considerably.

1.3.4 Application to Procedural Abstraction

In general, compilers do not reach minimal code size. PA can reduce code size by extracting duplicate code segments from a program (i.e. the binary code). The instructions of an assembly program do not depend on each other line by line but they can be reordered as long as the data flow dependencies between the instructions are respected. These can be modeled as directed edges in an acyclic graph [11], called data flow graph. For PA we minimize the DFGs by removing edges between two nodes if there are alternative chains of dependencies between them. The resulting sparse graphs are faster to mine, but yield the same relevant fragments. Embedding-based DAGMA finds a maximal non-overlapping subset of embeddings of each basic block in the minimized DFGs. Searching for the best maximal non-overlapping subset of all embeddings would probably lead to even better results, but its NP-complete complexity is too costly for our experiments.
After the mining, we judge the resulting fragments and embeddings with respect to their size, number of occurrences, and type in order to get the maximal code size reduction. Depending on the fragment and extraction type, an extraction by means of a jump may be cheaper than the call–instruction shown in Fig. 1.1. With respect to the compression profit (if positive), we extract the best fragment by clustering the nodes and edges of the embedding to a new single node and we add new instructions to the graph according to the extraction type (like return). Afterwards, DAGMA is applied again and searches for further frequent fragments until no more frequent subgraphs are found or the best compression profit is below some threshold.

Unfortunately, there are embeddings of induced frequent fragments that cannot be correctly extracted by PA, because they do not respect all original dependencies after such an embedding is extracted. There is a simple way to check if an embedding cannot be extracted: replace all nodes of the embedding with a single new node and redirect edges between in– and outside of the embedding so that they are connected to the new node. If the resulting graph is cyclic, embedding extraction would break dependencies.

As DAGMA expands fragments level by level and node by node some additional pruning is possible. Unregarded dependencies are reflected by cycles in the clustered graph and are the result of missing edges in the embedding. Due to DAGMA’s topological expansion, only single–edges towards the last inserted node (or the corresponding instruction) can be added and only cycles that contain this last node can be eliminated by further expansion steps. The expansion of the other nodes is finished at this time and cycles that contain only those finished nodes cannot be included into the embedding. Therefore, those fragments and their expansions can be pruned from the search lattice without affecting the number of instructions PA saves. In our PA experiments, we can prune over 90% of the embeddings that otherwise would be generated.

1.4 Evaluation

To evaluate DAGMA we compared it to gSpan, the most general and flexible graph miner currently available [15]. Since gSpan only addresses connected mining, we extended it with a pseudo–root node that is connected to every other node. This helper node is later removed from the resulting fragments [16].

Both algorithms are implemented in the same Java framework (using Sun JVM version 1.5.0). An AMD Opteron with 2 GHz and 11 GB of main memory has executed our comparisons on synthetic DAG databases, on a worst case database, and on a database from our application domain (Procedural Abstraction).

Synthetic DAGs were generated as follows: Every node and edge that is reachable from a randomly selected node in a big random master DAG is copied into the synthetic DAG database [3]. This way, the graphs automatically contain similarities. For the benchmark, we generate the database out of a master DAG that contains 50 nodes, 200 edges, and 10 labels. We restrict sub–DAGs to 5 topological levels or
Fig. 1.7 Runtimes for mining single–rooted (left), connected (middle) and unconnected (right) fragments (bottom) in a synthetic DAG database

Fig. 1.8 Runtime, memory, and number of duplicates for a fully connected DAG with 7 nodes

25 nodes. Regardless of the random database generated, we always got almost the same results. Fig. 1.7 compares the runtime of DAGMA and gSpan for graph–based and embedding–based support. For both types, our approach clearly outperforms gSpan, except for connected fragments (in the middle) because of our preprocessing that filters out unconnected fragments. The number of fragments and embeddings is significantly higher when mining unconnected. Since an unconnected fragment can become connected during expansion, no pruning is possible and our approach has to do much unnecessary work, discarded during the filter step. For a decreasing minimal support resp. an increasing number of embeddings the differences between the approaches get more prominent regardless of the fragments’ shapes. A simple extension restriction leads to single–rooted mining in DAGMA: After computing the initial set of frequent nodes, no other root is added to the fragments.

The worst case for DAG (and graph) miners is an equally labeled and fully connected DAG that can be created stepwise by inserting a node and connecting it to all previous nodes until the desired number of nodes is reached. Fig. 1.8 shows the results for an embedding–based search with minimal support 1 on such a maximal DAG with seven nodes. In that case 2,895,493 embeddings can be found. Again,
Fig. 1.9 Instruction savings for programs from MiBench

DAGMA clearly outperforms gSpan with respect to both runtime and memory consumption in all three mining types. The main advantage and the reason for this behavior become apparent on the right of Fig. 1.8: Due to its DAG–specific canonical form, DAGMA has to handle far less duplicates in costly isomorphism tests than gSpan. The same holds for the synthetic databases.

To evaluate our algorithm for PA, we transformed several ARM assembly codes from the MiBench suite [9] into DFGs and mined embedding–based. Fig. 1.9 gives the savings in code size compared to the original code size when mining with suffix trees, mining for single–rooted, connected, and unconnected fragments. Mining for single–rooted DAGs is not as successful as mining with suffix trees. But when searching for connected fragments a lot more instructions can be saved. The search for unconnected fragments leads to the best results.

1.5 Conclusion and Future Work

With DAGMA, we presented a flexible new DAG mining algorithm that is able to search for induced, unconnected or connected, multi– or single–rooted fragments in DAG databases. Since both graph– and (induced) embedding–based mining is possible (the latter is necessary for PA) and since DAGMA can mine both connected and unconnected (necessary for PA), DAGMA can be used for several application scenarios. The novel canonical form and the basic operations of the miner are based on the fact that DAGs have topological levels. The new algorithm faces significantly fewer duplicates in the search space enumeration compared to the general graph miner gSpan. This leads to faster runtime and reduced memory consumption. When applied to Procedural Abstraction, DAGMA achieves more code size reduction than traditional approaches. Procedural Abstraction traditionally searches with a minimal support of 2 embeddings to get the best possible results. For big binaries, the
resulting graphs sometimes have been too large to be mined at such a small support. Hence, it seems necessary to study heuristics that guide the mining process. It will probably also require parallel DAG mining.

References

16. Xifeng Yan and Jiawei Han. gSpan: Graph-Based Substructure Pattern Mining. In *Proc. IEEE Int’l Conf. on Data Mining (ICDM’02)*, pages 721–724, Maebashi City, Japan, Dec. 2002.